Modeling Unrestricted Coreference in OntoNotes

CoNLL-2011 Shared Task

Sameer S Pradhan¹ Lance Ramshaw¹

Martha Palmer³ Ralph Weischedel¹ Nianwen Xue⁴

Mitchell Marcus²

¹BBN Technologies, Cambridge, MA ²University of Pennsylvania, Philadelphia, PA ³University of Colorado, Boulder, CO ⁴Brandeis University, Waltham, MA

Year	Task
2000 2001 2002, 2003 2004, 2005	Base Phrase chunking Clause identification Named Entity recognition Semantic Role Labeling
2006, 2007 2008, 2009 2010 2011	Syntactic dependency parsing Syntactic and semantic dependency parsing Hedge detection Coreference resolution

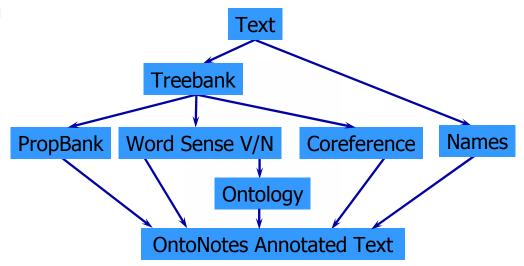
Year	Task
2000 2001 2002, 2003 2004, 2005 2006, 2007	Base Phrase chunking Clause identification Named Entity recognition Semantic Role Labeling Syntactic dependency parsing
2008, 2009 2010 2011	Syntactic and semantic dependency parsing Hedge detection Coreference resolution

Year	Task
2000 2001 2002, 2003 2004, 2005 2006, 2007 2008, 2009	Base Phrase chunking Clause identification Named Entity recognition Semantic Role Labeling Syntactic dependency parsing Syntactic and semantic dependency parsing
2010 2011	Hedge detection Coreference resolution

Year	Task
2000 2001 2002, 2003 2004, 2005 2006, 2007 2008, 2009	Base Phrase chunking Clause identification Named Entity recognition Semantic Role Labeling Syntactic dependency parsing Syntactic and semantic dependency parsing
2010 2011	Hedge detection Coreference resolution

- Wasn't tackled before as a CoNLL Shared Task
- Higher level task which could benefit from other layers
- Not much coreference data available before for unrestricted types of entities and events
- No standard evaluation set
- OntoNotes + CoNLL = Standard benchmark

- Wasn't tackled before as a CoNLL Shared Task
- Higher level task which could benefit from other layers
- Not much coreference data available before for unrestricted types of entities and events
- No standard evaluation set
- OntoNotes + CoNLL = Standard benchmark


- Wasn't tackled before as a CoNLL Shared Task
- Higher level task which could benefit from other layers
- Not much coreference data available before for unrestricted types of entities and events
- No standard evaluation set
- OntoNotes + CoNLL = Standard benchmark

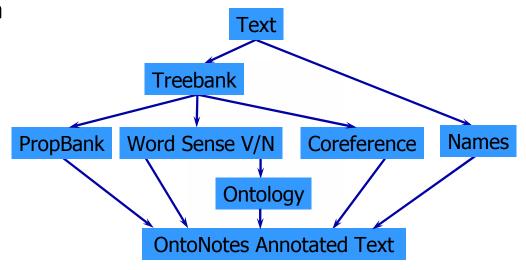
- Wasn't tackled before as a CoNLL Shared Task
- Higher level task which could benefit from other layers
- Not much coreference data available before for unrestricted types of entities and events
- No standard evaluation set
- OntoNotes + CoNLL = Standard benchmark

- Wasn't tackled before as a CoNLL Shared Task
- Higher level task which could benefit from other layers
- Not much coreference data available before for unrestricted types of entities and events
- No standard evaluation set
- OntoNotes + CoNLL = Standard benchmark

- Wasn't tackled before as a CoNLL Shared Task
- Higher level task which could benefit from other layers
- Not much coreference data available before for unrestricted types of entities and events
- No standard evaluation set
- OntoNotes + CoNLL = Standard benchmark

- Multiple layers of annotation
 - Syntax
 - Propositions
 - Word sense
 - Coreference
 - Names
- Multiple Languages
 - English ($\sim 1.3 \text{ MW}$)
 - Chinese ($\sim 1 \text{ MW}$)
 - Arabic (\sim 3 KW)
- Multiple Genres
 - Newswire
 - Broadcast News
 - Broadcast Conversation
 - Web Newsgroups and Blogs
 - Telephone Conversation
- High Inter-Annotator Agreement

Multiple layers of annotation


- Syntax
- Propositions
- Word sense
- Coreference
- Names

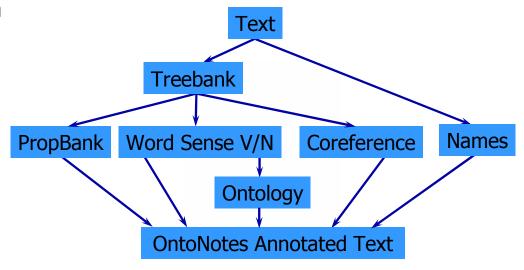
Multiple Languages

- English ($\sim 1.3 \text{ MW}$)
- Chinese ($\sim 1 \text{ MW}$)
- Arabic (\sim 3 KW)

Multiple Genres

- Newswire
- Broadcast News
- Broadcast Conversation
- Web Newsgroups and Blogs
- Telephone Conversation
- High Inter-Annotator Agreement

Multiple layers of annotation


- Syntax
- Propositions
- Word sense
- Coreference
- Names

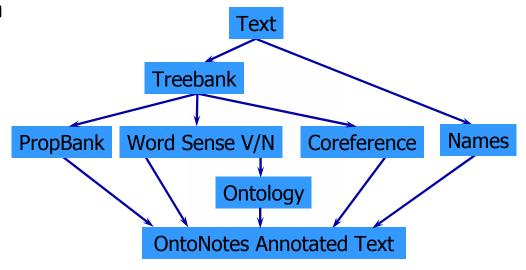
Multiple Languages

- English (~ 1.3 MW)
- Chinese (~ 1 MW)
- Arabic (\sim 3 KW)

Multiple Genres

- Newswire
- Broadcast News
- Broadcast Conversation
- Web Newsgroups and Blogs
- Telephone Conversation
- High Inter-Annotator Agreement

Multiple layers of annotation


- Syntax
- Propositions
- Word sense
- Coreference
- Names

Multiple Languages

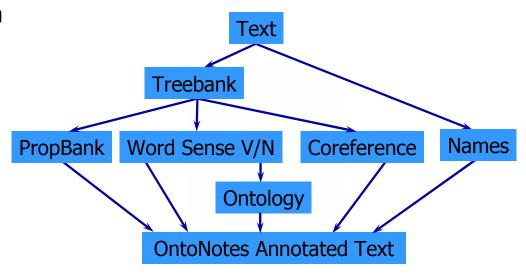
- English (~ 1.3 MW)
- Chinese (~ 1 MW)
- Arabic (\sim 3 KW)

Multiple Genres

- Newswire
- Broadcast News
- Broadcast Conversation
- Web Newsgroups and Blogs
- Telephone Conversation
- High Inter-Annotator Agreement

Multiple layers of annotation

- Syntax
- Propositions
- Word sense
- Coreference
- Names


Multiple Languages

- English (~ 1.3 MW)
- Chinese (~ 1 MW)
- Arabic (\sim 3 KW)

Multiple Genres

- Newswire
- Broadcast News
- Broadcast Conversation
- Web Newsgroups and Blogs
- Telephone Conversation

High Inter-Annotator Agreement

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - IDENTity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - IDENTity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

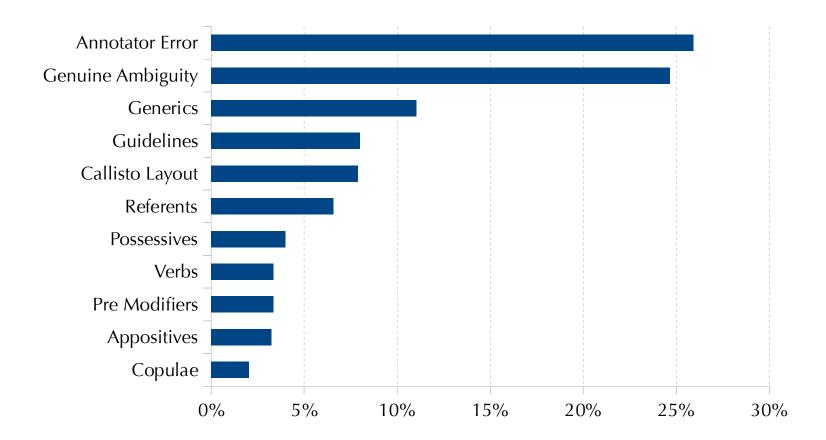
Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types

- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs**, verbs and names (\sim 2% exception)

Much more data linking all entity and event types


- Spans five genres
- Both Entities and Events
- No singletons only multi-mention entities annotated
- Two types of coreference
 - **IDENT**ity
 - APPOSitive
- No Copular constructions
- No Generics, or underspecified mentions
- Mentions tagged on **Treebank NPs, verbs** and names (\sim 2% exception)

Inter-Annotator Agreement

Genre	Ann1-Ann2	Ann1-Adj	Ann2-Adj
Newswire	80.9	85.2	88.3
Broadcast News	78.6	83.5	89.4
Broadcast News Broadcast Conversation	86.7	91.6	93.7
Magazine	78.4	83.2	88.8
Web	85.9	92.2	91.2

Disagreement Distribution

Disagreements over a sample of 11K words

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - \bigcirc CEAF_{m/e} [Luo, 2005] (entity based)
 - 4 BLANC [Recasens and Hovy, 2011] (Rand-index based)

External Resources

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - \bigcirc CEAF_{m/e} [Luo, 2005] (entity based)
 - 4 BLANC [Recasens and Hovy, 2011] (Rand-index based)

External Resources

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - \bigcirc CEAF_{m/e} [Luo, 2005] (entity based)
 - BLANC [Recasens and Hovy, 2011] (Rand-index based)
- External Resources

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - 1 MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - \bigcirc CEAF_{m/e} [Luo, 2005] (entity based)
 - 4 BLANC [Recasens and Hovy, 2011] (Rand-index based)

External Resources

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - \bigcirc CEAF_{m/e} [Luo, 2005] (entity based)
 - 4 BLANC [Recasens and Hovy, 2011] (Rand-index based)
- External Resources

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - 3 CEAF_{m/e} [Luo, 2005] (entity based)
 - 4 BLANC [Recasens and Hovy, 2011] (Rand-index based)
- External Resources

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - 3 CEAF_{m/e} [Luo, 2005] (entity based)
 - BLANC [Recasens and Hovy, 2011] (Rand-index based)

External Resources

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - 3 CEAF_{m/e} [Luo, 2005] (entity based)
 - BLANC [Recasens and Hovy, 2011] (Rand-index based)

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - 3 CEAF_{m/e} [Luo, 2005] (entity based)
 - BLANC [Recasens and Hovy, 2011] (Rand-index based)

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - \odot CEAF_{m/e} [Luo, 2005] (entity based)
 - BLANC [Recasens and Hovy, 2011] (Rand-index based)

Scope

- Identify and cluster all anaphoric mentions
- Cluster all anaphoric mentions given possible mention boundaries
- Cluster all anaphoric mentions given correct mentions

Specificity

- Exact phrase match
- Weighted/unweighted head word match

Quality of Layers

- Gold standard
- Predicted layers

Metric

- No silver-bullet.
- Various proposed over the years
 - MUC [Vilain et al., 1995] (link based)
 - 2 B-CUBED [Bagga and Baldwin, 1998] (mention based)
 - 3 CEAF_{m/e} [Luo, 2005] (entity based)
 - 4 BLANC [Recasens and Hovy, 2011] (Rand-index based)

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

- Scope
 - Identify and cluster all anaphoric mentions in English, that represent identity coreference (IDENT)
- Specificity
 - Exact phrase match
- Quality of Layers
 - Predicted layers
- Metric
 - Compute all metrics
 - Winning system determined by $\frac{MUC + B CUBED + CEAF_e}{3}$
- External Resources
 - Closed Track
 - WordNet [Fellbaum, 1998]
 - Number and Gender table [Bergsma and Lin, 2006]
 - Open Track
 - Everything used in Closed Track, plus other resources, such as Wikipedia

Data Sample

```
#begin document (nw/wsj/07/wsj_0771); part 000
nw/wsj/07/wsj_0771 0
                                        "
                                            (TOP(S(S*
                                                                                                 (ARG1*
nw/wsj/07/wsj_0771 0
                        1 Vandenberg
                                       NNP
                                                 (NP*
                                                                          (PERSON)
                                                                                     (ARG1*
                                                                                                            (8)(0)
nw/wsj/07/wsj_0771 0
                                       CC
nw/wsj/07/wsj_0771 0
                                      NNP
                                                                          (PERSON)
                                                                                                           (23)|8)
                             Rayburn
                                                   *)
                                                                                         *)
nw/wsj/07/wsj_0771 0
                                       VBP
                                  are
                                                 (VP*
                                                                                       (∀*)
nw/wsj/07/wsj_0771 0
                                             (NP(NP*)
                                                                                     (ARG2*
                              heroes
                                      NNS
nw/wsj/07/wsj_0771 0
                                        IN
                                                 (PP*
                                  of
nw/wsj/07/wsj_0771 0
                                        NN
                                             (NP*))))
                                                                                                              (15)
                                                                                         *)
                                mine
nw/wsj/07/wsj_0771 0
nw/wsj/07/wsj_0771 0
                                                   *)
                                                                                                     *)
nw/wsj/07/wsj_0771 0
                                                 (NP*
                                                                                                (ARGO* *
                                 Mr.
                                      NNP
                                                                                                               (15
nw/wsj/07/wsj_0771 0
                               Boren
                                      NNP
                                                   *)
                                                                          (PERSON)
                                                                                                     *) *
                                                                                                               15)
nw/wsj/07/wsj_0771 0 12
                                      VBZ
                                                 (VP*
                                                               01
                                                                                                   (V*) *
                                says
                                                         say
```

#end document

Data Sample

```
#begin document (nw/wsj/07/wsj_0771); part 000
nw/wsj/07/wsj_0771 0
                                        "
                                            (TOP(S(S*
                                                                                                 (ARG1*
nw/wsj/07/wsj_0771 0
                        1 Vandenberg
                                       NNP
                                                 (NP*
                                                                          (PERSON)
                                                                                     (ARG1*
                                                                                                            (8)(0)
nw/wsj/07/wsj_0771 0
                                       CC
nw/wsj/07/wsj_0771 0
                                      NNP
                                                                          (PERSON)
                                                                                                           (23)|8)
                             Rayburn
                                                   *)
                                                                                         *)
nw/wsj/07/wsj_0771 0
                                       VBP
                                  are
                                                 (VP*
                                                                                       (∀*)
nw/wsj/07/wsj_0771 0
                                             (NP(NP*)
                                                                                     (ARG2*
                              heroes
                                      NNS
nw/wsj/07/wsj_0771 0
                                        IN
                                                 (PP*
                                  of
nw/wsj/07/wsj_0771 0
                                        NN
                                             (NP*))))
                                                                                                              (15)
                                                                                         *)
                                mine
nw/wsj/07/wsj_0771 0
nw/wsj/07/wsj_0771 0
                                                   *)
                                                                                                     *)
nw/wsj/07/wsj_0771 0
                                                 (NP*
                                                                                                 (ARGO* *
                                 Mr.
                                      NNP
                                                                                                               (15
nw/wsj/07/wsj_0771 0
                               Boren
                                      NNP
                                                   *)
                                                                          (PERSON)
                                                                                                     *) *
                                                                                                               15)
nw/wsj/07/wsj_0771 0 12
                                      VBZ
                                                 (VP*
                                                               01
                                                                                                   (V*) *
                                says
                                                         say
```

#end document

Data Sample

```
#begin document (nw/wsj/07/wsj_0771); part 000
nw/wsj/07/wsj_0771 0
                                        "
                                            (TOP(S(S*
                                                                                                 (ARG1*
nw/wsj/07/wsj_0771 0
                        1 Vandenberg
                                       NNP
                                                 (NP*
                                                                          (PERSON)
                                                                                     (ARG1*
                                                                                                            (8)(0)
nw/wsj/07/wsj_0771 0
                                       CC
nw/wsj/07/wsj_0771 0
                                      NNP
                                                                          (PERSON)
                             Rayburn
                                                   *)
                                                                                         *)
                                                                                                           (23)|8)
nw/wsj/07/wsj_0771 0
                                       VBP
                                  are
                                                 (VP*
                                                                                       (∀*)
nw/wsj/07/wsj_0771 0
                                             (NP(NP*)
                                                                                     (ARG2*
                              heroes
                                      NNS
nw/wsj/07/wsj_0771 0
                                        IN
                                                 (PP*
                                  of
nw/wsj/07/wsj_0771 0
                                        NN
                                             (NP*))))
                                                                                                              (15)
                                                                                         *)
                                mine
nw/wsj/07/wsj_0771 0
nw/wsj/07/wsj_0771 0
                                                   *)
nw/wsj/07/wsj_0771 0
                                                 (NP*
                                                                                                (ARGO* *
                                 Mr.
                                      NNP
                                                                                                               (15
nw/wsj/07/wsj_0771 0
                               Boren
                                      NNP
                                                   *)
                                                                          (PERSON)
                                                                                                     *) *
                                                                                                               15)
nw/wsj/07/wsj_0771 0 12
                                      VBZ
                                                 (VP*
                                                               01
                                                                                                   (V*) *
                                says
                                                         say
```

#end document

Participant Statistics

- 23 participants
- from 11 countries

Country	Participants
Brazil	2
Canada	1
China	6
Germany	3
India	1
Italy	1
Japan	1
Spain	1
Sweden	1
Switzerland	1
USA	5

Official; Closed track; Predicted mentions

System	MD	MUC	B-CUBED	CEAF _m	CEAF _e	BLANC	Official
	F	F^1	F^2	F	F ³	F	$\frac{F^1+F^2+F^3}{3}$
lee	70.70	59.57	68.31	56.37	45.48	73.02	57.79
sapena	43.20	59.55	67.09	53.51	41.32	71.10	55.99
chang	64.28	57.15	68.79	54.40	41.94	73.71	55.96
nugues	68.96	58.61	65.46	51.45	39.52	71.11	54.53
santos	65.45	56.65	65.66	49.54	37.91	69.46	53.41
song	67.26	59.95	63.23	46.29	35.96	61.47	53.05
stoyanov	67.78	58.43	61.44	46.08	35.28	60.28	51.92
sobha	64.23	50.48	64.00	49.48	41.23	63.28	51.90
kobdani	61.03	53.49	65.25	42.70	33.79	62.61	51.04
zhou	62.31	48.96	64.07	47.53	39.74	64.72	50.92
charton	64.30	52.45	62.10	46.22	36.54	64.20	50.36
yang	63.93	52.31	62.32	46.55	35.33	64.63	49.99
hao	64.30	54.47	61.01	45.07	32.67	65.35	49.38
xinxin	61.92	46.62	61.93	44.75	36.23	64.27	48.46
zhang	61.13	47.28	61.14	44.46	35.19	65.21	48.07
kummerfeld	62.72	42.70	60.29	45.35	38.32	59.91	47.10
zhekova	48.29	24.08	61.46	40.43	35.75	53.77	40.43
irwin	26.67	19.98	50.46	31.68	25.21	51.12	31.28

Official; Open track; Predicted mentions

System	MD	MUC	B-CUBED	CEAF _m	CEAF _e	BLANC	Official
	F	F^1	F^2	F	F^3	F	$\frac{F^1+F^2+F^3}{3}$
lee	70.94	61.03	68.93	56.70	44.98	73.96	58.31
cai	67.40	57.80	67.66	53.37	41.67	71.62	55.71
uryupina	68.39	57.63	65.18	51.42	40.16	68.88	54.32
klenner	62.28	49.86	64.97	50.03	40.48	69.05	51.77
irwin	35.27	27.21	53.55	33.86	26.76	51.76	35.84

Supplementary; Closed track; Gold boundaries

System	MD	MUC	B-CUBED	CEAF _m	CEAF _e	BLANC	Official
	F	F^1	F^2	F	F^3	F	$\frac{F^1+F^2+F^3}{3}$
lee	75.16	63.90	70.03	59.26	48.30	74.77	60.74
nugues	72.42	62.12	66.68	53.84	41.93	71.75	56.91
chang	67.92	59.79	68.65	54.95	41.42	74.29	56.62
santos	67.80	59.52	67.26	51.87	39.72	72.34	55.50
kobdani	66.08	59.57	67.27	44.49	34.92	64.10	53.92
stoyanov	70.29	61.54	62.48	48.08	36.64	62.96	53.55
zhang	64.89	51.64	62.16	46.62	36.95	66.54	50.25
song	66.68	55.48	61.29	43.62	32.53	60.22	49.77
zhekova	62.67	35.22	61.20	41.31	36.38	54.79	44.27

Supplementary; Open track; Gold boundaries

System	MD	MUC	B-CUBED	CEAF _m	CEAF _e	BLANC	Official
	F	F^1	F^2	F	F ³	F	$\frac{F^1+F^2+F^3}{3}$
lee	75.39	65.39	70.78	59.78	47.92	75.83	61.36

Supplementary; Closed track; Gold mentions

System	MD	MUC	B-CUBED	CEAF _m	CEAF _e	BLANC	Official
	F	F^1	F^2	F	F ³	F	$\frac{F^1+F^2+F^3}{3}$
chang	100	82.55	73.70	69.71	65.24	77.26	73.83

Supplementary; Open track; Gold mentions

System	MD	MUC	B-CUBED	CEAF _m	CEAF _e	BLANC	Official
	F	F^1	F^2	F	F ³	F	$\frac{F^1+F^2+F^3}{3}$
lee	90.93	81.56	75.95	70.73	61.64	80.35	73.05

Approaches (I)

	Task	Syn.	Learning Framework	Markable Identification	Markable
lee	C+O	Р	Rule-based	Rules to exclude Copular construction, Appositives, Pleonastic <i>it</i> , etc.	Feature dependent with shared attributes
sapena	С	Р	Decision Tree + Relaxation Labeling	NP (maximal span) $+$ PRP $+$ NE $+$ Capitalized noun heuristic	Full phrase
chang	C	Р	Learning Based Java	NP, NE, PRP, PRP\$	Full phrase
cai	0	Р	Compute hyperedge weights	NP, PRP, PRP\$, Base phrase chunks, Pleonastic <i>it</i> filter	Full phrase
nugues	С	D	Logistic Regression (LIBLINEAR)	NP, PRP\$ and sequence of NNP(s) in post processing using ALIAS and STRINGMATCH	Head word
uryupina	0	Р	Decision Tree. Different classifiers for Pro. and non-Pro.	NP, NE, PRP, PRP\$, and rules to exclude some specific cases	Full phrase
santos	С	Р	ETL committee and Random Forest WEKA)	All NP and all pronouns and PER, ORG , GPE in NP	Full phrase
song	C	Р	MaxEnt (OpénNLP)	Mention detection classifier	Full phrase
stoyanov	C	Р	Averaged perceptron	NE and possessives in addition to ACE based system	Full phrase
sobha	С	Р	CRF for non-pronominal and salience factor for pronouns	Machine learned pleonastic <i>it</i> , plus NP, PRP, PRP\$ and NE	Minimal (Chunk/ ${ m NE}$) and Maximum span
klenner	Ο	D	Rule-based	NP, NE, PRP, PRP\$	Shared attributed/transitivity by using a virtual prototype
kobdani	С	Р	Decision Tree	NP (no mention of PRP\$)	Start word, End word and Head of NP
zhou	С	Р	SVM tree kernel	Rule-based; Five rules: PRP\$, PRP, NE, smallest NP subsuming NE and DET+NP	Full phrase
charton	С	Р	Multi-layer perceptron	Rules based on POS, NE and filter out pleonastic it using rule-based filter	Full phrase
yang	C	Р	MaxEnt (MALLET)	NP, PRP, PRP\$, pre-modifiers and verbs	Full phrase
hao .	C	Р	MaxEnt	NP, PRP, PRP\$, VBD	Full phrase
xinxin	C	Р	ILP/Information gain	NP, PRP, PRP\$	Full phrase
zhang	C	P	SVM	IOB classification	Full phrase
kummerfield	С	Р	Unsupervised generative model	NP, PRP, PRP\$ with maximal span	Full phrase
zhekova	С	P	TIMBL memory based learner	${ m NP},\ {\sf Proper\ nouns},\ { m PRP},\ { m PRP}$, plus verb with predicate lemma	Head word
irwin	C+O	Р	Classification-based ranker	NP, PRP, PRP\$	Shared attributes

Approaches (III)

	Verb	Feature Selection	Features	Training
lee	×	×		_
sapena	X	X		Train + Dev
chang	×	×		Train + Dev
cai	X	X		_
nugues	×	Forward + Backward starting from Soon feature set	24	Train + Dev
uryupina	×	Multi-Objective Optimization on three splits. NSGA-II	46	Train + Dev
santos	×	Inherent to the classifiers		Train + Dev
song	×	Same feature set, but per classifier	40	Train
stoyanov	×	×	76	_
sobha	X	X		Train
klenner	X	X		_
kobdani	X	Information gain ratio		Train
zhou	×	X	17	Train + Dev
charton	×	X	22	Train
yang	$\sqrt{}$	×	40	Train + Dev
hao	\checkmark	X		Train + Dev
xinxin	×	Information gain ratio	65	
zhang	. ×	×		
kummerfield	$d \qquad \qquad$	×		
zhekova	\checkmark	×		Train + Dev
irwin	×	×		_

Approaches (III)

	Positive Training Examples	Negative Training Examples
lee	<u> </u>	_
sapena	All mention pairs and longer of nested mentions with common head kept	Mention pairs with less than threshold (5) number of different attribute values are considered (22% out of 99% original are discarded)
chang	Closest antecedent	All preceding mentions in a union of of <i>gold</i> and <i>predicted</i> mentions. Mentions where the first is pronoun and other not are not considered
cai	Weights are trained on part of the	training data
nugues	Closest Antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
uryupina	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
santos	Extended version of Soon (2001) we mentions in the sentence of the clo	where in addition to their strategy, positive and negative examples from sest preceding antecedent are considered
song	Pre-cluster pair models separate for	r each pair NP-NP, NP-PRP and PRP-PRP
stoyanov	Smart Pair Generation (SmartPG) of rules	where the type of antecedent is determined by the type of anaphor using a set
sobha	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
klenner		_
kobdani	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
zhou	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
charton	From the end of the document, until an antecedent is found, or 10 mentions	Negative examples in between anaphor and closest antecedent
yang	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
hao	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
xinxin	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
zhang	Closest antecedent (Soon, 2001)	Negative examples in between anaphor and closest antecedent (Soon, 2001)
kummerfield	_	<u> </u>
zhekova		Examples in the past three sentences
irwin	Cluster query with NULL cluster for	discourse new mentions

Approaches (IV)

	Decoding	Parse Configuration
lee	Multi-pass Sieves	
sapena	Iterative	1-best
chang	Best link and All links strategy; with and without constraints – Best link without constraints was selected for the official run	
cai	Recursive 2-way Spectral clustering (Agarwal, 2005)	
nugues	Closest-first clustering for pronouns and Best-first clustering for non-pronouns	1-best
uryupina	Mention pair model without ranking as in Soon 2001	
santos	Limited number of preceding mentions 60 for automatic and 40 given gold boundaries; Aggressive-merge clustering (Mccarthy and Lenhert, 1995)	
song	Pre-clusters, with singleton pronoun pre-clusters, and use closest-first clustering. Different link models based on the type of linking mentions — NP-PRP, PRP-PRP and NP-NP	
stoyanov	Single-link clustering by computing transitive closure between pairwise positives.	
sobha	Pronominal: all preceding NPs in the sentence and preceding 4 sentences	
klenner	Incremental entity creation	
kobdani	Best-first clustering. Threshold of 100 words used for long documents	1-best
zhou	_	
charton	MLP with score of 0.5 used for linking and 10 mentions	
yang	Maximum 23 sentences to the left; Constrained clustering	D 1 16
hao .	Beam search (Luo, 2004)	Packed forest
xinxin	Best-first clustering followed by ILP optimization	
zhang	Window of 100 markables	Circon Boulcolors margan vicini
kummerfield	Rule-based, with Pre- and post- resolution filters	Given + Berkeley parser parses
zhekova irwin	From last possible mention in document Cluster-ranking approach (Rahman and Ng, 2009)	

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (*lee*) was completely rule-based

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (*lee*) was completely rule-based

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (*lee*) was completely rule-based

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (lee) was completely rule-based

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (*lee*) was completely rule-based

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (*lee*) was completely rule-based

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (*lee*) was completely rule-based

- Most systems used the two-pass mention detection and linking approach
- Very few participants attempted event coreference resolution
- System performance seemed to be stable across genres
- Gold standard layer information did not help much
- Scoring coreference seems to be a continuing issue, with very little correlation between various methods
- Choice of metric makes only small changes to overall ranking
- Best-performing system (lee) was completely rule-based